
Google TTS with Chirp3 HD in Japanese
If you’ve ever tried to generate natural-sounding Japanese text-to-speech, you know it’s not as straightforward as it might seem. Japanese has unique pronunciation patterns, intonation, and pause structures that make text-to-speech particularly challenging. I’ve been experimenting with Google’s TTS services for Japanese content, and the release of their new Chirp3 HD voice synthesis model has been a game-changer for creating high-quality audio content.
In my previous TTS projects, I’d been using the WaveNet model, and as I’ve shared before, the results were quite unpredictable when it came to pause control and natural intonation. I had to rely heavily on SSML to control pauses, but it was time-consuming, energy-draining for audio verification, and not always effective.
Recently, I’ve been testing the new Chirp3 HD model, available since March 2025 (release note) , and it’s given me a fresh perspective on Japanese text-to-speech quality and efficiency.
Pros of Chirp3 HD Voice Synthesis
Natural Intonation and Pauses
The Chirp3 HD voice synthesis model is designed to produce much more natural-sounding speech right out of the box. You don’t need extensive SSML control to get decent results anymore. It also handles punctuation and line breaks much better for pause control in Japanese text-to-speech applications.
Cons
Higher Cost
The trade-off for better quality is a higher price tag compared to WaveNet. Check out the “Pricing Comparison” section below for the exact numbers.
No SSML Support
This one’s a bit of a mixed bag. Chirp3 HD doesn’t support SSML for precise control, relying instead on basic punctuation, line breaks, and a few pause markups for pause control . While this simplifies things, it also means less fine-grained control over your Japanese text-to-speech output.
Struggles with Long Sentences
Here’s where things get tricky. The model has difficulties with very long sentences. I’m not sure if this is specific to Japanese or a general limitation, but I’ve found that if the text is too long, even with proper punctuation (Japanese uses full-width punctuation), the model will return an error. I had to split long sentences into smaller chunks, adding line breaks to make it work.
Google TTS Japanese Example
Here’s a Google TTS Japanese example of how to work with the Chirp3 HD model. This example uses a simple text input about Van Gogh’s biography:
1876年4月、ゴッホは23歳になり、英国テムズ河河口にあるラムズゲイトで、ストークス氏の経営する寄宿学校の無給教師の募集を新聞広告で見つけ、子ども達に初歩のフランス語、算術、書き取りなどを教えました。
1876年6月、学校はロンドン郊外のテムズ河上流にあるアイズワースに移転しました。ゴッホは徒歩でアイズワースまで旅をしますが、貧しいものから集金するという仕事に耐えられず、学校に戻ることなく、アイズワースにあったメソジスト派教会のジョーンズ牧師の下で、少年たちに聖書を教えたり、ロンドン郊外を布教して回りました。熱中しやすいゴッホは、猛烈な布教活動のため極度の疲労となりました。
1876年12月、家族の住むエッテンへ帰りました。父から聖職者になるには7,8年かかると諭されて諦めました。
Try to enter this into the Google Text-to-Speech Synthesizer and select the Chirp3 HD model for Japanese. Chances are, you will see this error:
This request contains sentences that are too long. Consider splitting up long sentences with sentence ending punctuation e.g. periods.

However, if you add line breaks after commas or periods, keeping each line under 80-100 characters, it should work fine. Here’s the edited version for better Chirp3 HD voice synthesis results:
1876年4月、ゴッホは23歳になり、英国テムズ河河口にあるラムズゲイトで、⏎
ストークス氏の経営する寄宿学校の無給教師の募集を新聞広告で見つけ、⏎
子ども達に初歩のフランス語、算術、書き取りなどを教えました。
1876年6月、学校はロンドン郊外のテムズ河上流にあるアイズワースに移転しました。⏎
ゴッホは徒歩でアイズワースまで旅をしますが、⏎
貧しいものから集金するという仕事に耐えられず、⏎
学校に戻ることなく、⏎
アイズワースにあったメソジスト派教会のジョーンズ牧師の下で、⏎
少年たちに聖書を教えたり、ロンドン郊外を布教して回りました。⏎
熱中しやすいゴッホは、猛烈な布教活動のため極度の疲労となりました。
1876年12月、家族の住むエッテンへ帰りました。⏎
父から聖職者になるには7,8年かかると諭されて諦めました。
Output 1 (voice: ja-JP-Chirp3-HD-Enceladus):
This Google TTS Japanese example result is much better than what I got with the WaveNet model. Here is a sample of the same text, without SSML, using the WaveNet model:
Output 2 (voice: ja-JP-Wavenet-D):
As you can hear, the Chirp3 HD voice synthesis model produces a more natural-sounding voice with better pauses. I would give it a 8/10. Now let me edit the text to make it more polished:
1876年4月、ゴッホは[pause]23歳になり、英国テムズ河河口にあるラムズゲイトで、
ストークス氏の経営する寄宿学校の無給教師の募集を新聞広告で見つけ、
子ども達に初歩のフランス語、算術、書き取りなどを教えました。
[pause long]1876年6月、[pause short]学校はロンドン郊外のテムズ河上流にあるアイズワースに移転しました。
[pause]ゴッホは[pause short]徒歩でアイズワースまで旅をしますが、
貧しいものから集金するという仕事に耐えられず、
学校に戻ることなく、
アイズワースにあったメソジスト派教会のジョーンズ牧師の下で、
少年たちに聖書を教えたり、ロンドン郊外を布教して回りました。
熱中しやすいゴッホは、猛烈な布教活動のため極度の疲労となりました。
[pause long]1876年12月、家族の住むエッテンへ帰りました。
父から聖職者になるには7,8年かかると諭されて諦めました。
Output 3 (voice: ja-JP-Chirp3-HD-Enceladus, edited):
This version sounds even better, with proper pauses after “ゴッホは” and between sentences.
As you can see from this Google TTS Japanese example, even with the more advanced Chirp3 HD model, you still need to do some manual editing to get the best results for Japanese text-to-speech projects.
Pricing Comparison for Japanese Text-to-Speech
Here’s what you need to know about the cost difference:
- Chirp3 HD - Free usage for the first 1 million characters, then US$30 per 1 million characters (US$0.00003 per character)
- WaveNet - Free usage for the first 1 million characters, thenUS$16 per 1 million characters (US$0.000016 per character)
Pricing details: https://cloud.google.com/text-to-speech/pricing?hl=en
Chirp3 HD voice synthesis costs almost double what WaveNet does, so you’ll want to consider whether the improved quality justifies the extra expense for your Japanese text-to-speech use case.
Conclusion
After testing both models extensively, I’d say Chirp3 HD is definitely worth considering if you’re working with Japanese text-to-speech and natural sound quality is a priority. The improved intonation and pause handling make it much easier to get good results without diving deep into SSML tweaking.
However, the higher cost and lack of SSML support might be deal-breakers depending on your specific needs. If you’re on a tight budget or need precise control over every aspect of the speech output, WaveNet might still be your best bet for Japanese text-to-speech projects.
For most casual users or projects where natural-sounding speech is more important than cost optimization, Chirp3 HD voice synthesis feels like a solid upgrade. Just be prepared to work around its quirks with long sentences and manual punctuation adjustments.
Further Reading
- Samples for different voice models grouped by language: https://cloud.google.com/text-to-speech/docs/list-voices-and-types
- Google Text-to-Speech Synthesizer in Google Cloud https://console.cloud.google.com/speech/text-to-speech
- My script to generate synthesized audio files from text: https://github.com/calvincchan/google-tts-script